ادیب، یوسف، رادسلیمانی، لیلا، و عظیمی، محمد. (۱۳۹۴). تأثیر هوشمندسازی مدارس در تعامل با نگرش به فناوری اطلاعات و ارتباطات بر ارتقاء فرآیند یاددهی یادگیری و خودکارآمدی تحصیلی. رهیافتی نو در مدیریت آموزشی، ۶(۱ (پیاپی ۲۱))، ۲۱-41.
تارنمای وزارت بهداشت (۳۰/۱۱/۱۳۹۸) به آدرس https://behdasht.gov.ir/ کد خبر: ۱۹۹۷۹۹
ترکزاده، جعفر، آهنگری، مهدی، محمدی، مهدی، مرزوقی، رحمت اله، و هاشمی، ستار. (۱۳۹۸). بررسی مؤلفههای ارزیابی اثربخشی درونی دورههای آموزش الکترونیکی دانشگاهی. آموزش عالی ایران، ۱۱(۱)، ۱۲۵-۱۵۹. https://www.sid.ir/fa/journal/ViewPaper.aspx?id=510403
ذوالفقاری، میترا، نگارنده، رضا، و احمدی، فضل اله. (۱۳۸۹). اثربخشی سیستم آموزش الکترونیکی ترکیبی در آموزش دانشجویان پرستاری و مامایی دانشگاه علوم پزشکی تهران. مجله ایرانی آموزش در علوم پزشکی، ۱۰(۴ (پیاپی ۲۸))، ۳۹۸-409.
رحمانی، فاطمه، احمدی، حامد، قنبری، الهام، و خراسانی کیاسری، سیدمحمود. (۱۳۹۸). امکانسنجی و رتبهبندی عوامل مؤثر بر توسعه یادگیری الکترونیکی در آموزش عالی با رویکرد تصمیمگیری چندمعیاره فازی. فناوری آموزش (فناوری و آموزش)، ۱۳(۳)، ۴۲۵-440.
زمانپور، عنایت اله، حسینخانی، محمدحسین، و مرادیانی دیزه رود، سیده خدیجه. (1392). تأثیر اضطراب کامپیوتر بر نگرش به یادگیری الکترونیکی: نقش واسطهای نگرش و خودکارآمدی کامپیوتر و اینترنت. روانشناسی تربیتی، 9(28)، 77-98.
زمانپور، عنایت اله و میرزابیگی، محمدعلی. (1389). بررسی عوامل مؤثر بر عملکرد تحصیلی یادگیرندگان الکترونیکی در آموزش عالی: ارائه مدل موفقیت بر اساس دیدگاه یادگیرندگان. مطالعات برنامه درسی، 4(16)، 130-164.
شریفی، محمد، فتحآبادی، جلیل، شکری، امید و پاکدامن، شهلا. (1398). تجربه آموزش الکترونیکی در نظام آموزشی ایران: فراتحلیل اثربخشی آموزش الکترونیکی در مقایسه با آموزش حضوری. پژوهش در یادگیری آموزشگاهی و مجازی، 7(1 (پیاپی ۲۵)) ۹-۲۴.
عزیزی شمامی، مصطفی، جعفری کرفستانی، زهرا، و عابدینی، میمنت. (۱۳۹۶). بررسی ارتباط نگرش به یادگیری الکترونیک و خودتنظیمی در پیشرفت تحصیلی دانشجویان دانشگاه علوم پزشکی بابل. مرکز مطالعات و توسعه آموزش علوم پزشکی یزد، ۱۲(۱-۲)، ۱۱۴-127.
Abe, J. A. A. (2020). Big five, linguistic styles, and successful online learning. The Internet and Higher Education, 100724. doi:10.1016/j.iheduc.2019.100724
Ahmed, U., Umrani, W. A., Qureshi, M. A., & Samad, A. (2018). Examining the links between teachers support, academic efficacy, academic resilience, and student engagement in Bahrain. International Journal of Advanced and Applied Sciences, 5(9), 39-46.
Ajijola, E. M., Ogunlade, O. O., & Aladesusi, G. A. (2022). The attitude of Distance Learners towards the Utilization of Learning Management System (A case study of National Open University of Nigeria). Indonesian Journal of Teaching in Science, 2(1), 47-56.
Alva, S.A. (1991).Academic invulnerability among Mexican-American students: The importance of protective and resources and appraisals. Hispanic Journal of Behavioral Sciences, 13, 18–34
Arispe, K., & Blake, R. J. (2012). Individual factors and successful learning in a hybrid course. System, 40(4), 449–465.
Ashrafi, A., Zareravasan, A., Rabiee Savoji, S., & Amani, M. (2020). Exploring factors influencing students’ continuance intention to use the learning management system (LMS): a multi-perspective framework. Interactive Learning Environments, 1-23.
Barclay, D. W., Higgins, C., & Thompson, R. (1995). The partial least squares approach to causal modeling: Personal computer adoption and use as illustration. Technology Studies, 2(2), 285–309
Bervell, B., Nyagorme, P., & Arkorful, V. (2020). LMS-Enabled Blended Learning Use Intentions among Distance Education Tutors: Examining the Mediation Role of Attitude Based on Technology-Related Stimulus-Response Theoretical Framework. Contemporary Educational Technology, 12(2), ep273.
Bhagat, K. K., Wu, L. Y., & Chang, C. Y. (2019). The impact of personality on students' perceptions towards online learning. Australasian Journal of Educational Technology, 35(4)
Bidjerano, T., & Dai, D. Y. (2007). The relationship between the big-five model of personality and self-regulated learning strategies. Learning and Individual Differences, 17(1), 69–81. doi:10.1016/j.lindif.2007.02.001
Cheng, S. L. (2019). The Relationships Between Perceived Course Structures, Conscientiousness, Motivational Beliefs, and Academic Procrastination in Online Undergraduate Courses (Doctoral dissertation, The Ohio State University).
Chin, W. W., & Newsted, P. R. (1999). Structural equation modeling analysis with small samples using partial least squares. In: R. H. Hoyle (Ed.), Statistical strategies for small sample research (pp. 307–342). Thousand Oaks, CA: Sage.
Connor, K. M., & Davidson, J. R. T. (2003). Development of a new resilience scale: The Connor-Davidson Resilience Scale (CD-RISC). Depression and Anxiety, 18, 76–82.
Costa Jr, P. T., & McCrae, R. R. (1995). Domains and facets: Hierarchical personality assessment using the Revised NEO Personality Inventory. Journal of personality assessment, 64(1), 21-50.
Costa, P. T., & McCrae, R. R. (1992).Revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI): professional manual. Odessa, FL: Psychological AssessmentResources.
Elfeky, A. I. M., & Elbyaly, M. Y. H. (2021). The use of data analytics technique in learning management system to develop fashion design skills and technology acceptance. Interactive Learning Environments, 1-18.
Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics.
Forson, I. K., & Vuopala, E. (2019). Online learning readiness: perspective of students enrolled in distance education in Ghana. The Online Journal of Distance Education and e-Learning, 7(4), 277-294.
Funder, D. (1997).The personality puzzle. New York, NY: Norton.
Gostin, L. O., Tomori, O., Wibulpolprasert, S., Jha, A. K., Frenk, J., Moon, S., ... & Leung, G. M. (2016). Toward a common secure future: four global commissions in the wake of Ebola. PLoS medicine, 13(5), e1002042.
Govindasamy, T. (2001). Successful implementation of e-learning: Pedagogical considerations. The internet and higher education, 4(3-4), 287-299.
Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2021). A primer on partial least squares structural equation modeling (PLS-SEM). Sage publications.
Hair, J. F., Sarstedt, M., Pieper, T. M., & Ringle, C. M. (2012). Te use of partial least squares structural equation modeling in strategic management research: A review of past practices and recommendations for future applications. Long Range Planning, 45, 320–340.
Hamdan, K. M., Al-Bashaireh, A. M., Zahran, Z., Al-Daghestani, A., Samira, A. H., & Shaheen, A. M. (2021). University students' interaction, Internet self-efficacy, self-regulation and satisfaction with online education during pandemic crises of COVID-19 (SARS-CoV-2). International Journal of Educational Management.
He, T., Huang, Q., Yu, X., & Li, S. (2020). Exploring students’ digital informal learning: the roles of digital competence and DTPB factors. Behaviour & Information Technology, 1–11.
Hooper, D., Coughlan, J., & Mullen, M. R. (2008). Structural equation modelling: Guidelines for determining model fit. Electronic journal of business research methods, 6(1), pp53-60.
Howard, S., & Johnson, B. (2000). What makes the difference? Children and teachers talk about resilient outcomes for children “at risk.” Educational Studies, 26, 321–337.
Hu, H., & Driscoll, M. P. (2013). Self-regulation in e-learning environments: A remedy for community college?. Journal of Educational Technology & Society, 16(4), 171-184.
Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55.
Keller, H., & Karau, S. J. (2013). The importance of personality in students’ perceptions of the online learning experience. Computers in Human Behavior, 29(6), 2494-2500.
Khairuddin, Z., Arif, N. N. A. N. M., & Khairuddin, Z. (2020). Students' Readiness on Online Distance Learning (ODL). Universal Journal of Educational Research, 8(12), 7141-7150.
Khalaf, M. A. (2014). Validity and reliability of the academic resilience scale in egyptian context. US China Educ. Rev. B, 4, 202-210.
Kumalasari, D., & Akmal, S. Z. (2021). Less Stress, More Satisfaction with Online Learning During the COVID-19 Pandemic: The Moderating Role of Academic Resilience.
Lai, C.-L., & Hwang, G.-J. (2021). Strategies for enhancing self-regulation in e-learning: a review of selected journal publications from 2010 to 2020. Interactive Learning Environments, 1–23. doi:10.1080/10494820.2021.1943455
Lazar, I. M., Panisoara, G., & Panisoara, I. O. (2020). Digital technology adoption scale in the blended learning context in higher education: Development, validation and testing of a specific tool. PloS one, 15(7), e0235957.
Liaw, S. S., & Huang, H. M. (2013). Perceived satisfaction, perceived usefulness and interactive learning environments as predictors to self-regulation in e-learning environments. Computers & Education, 60(1), 14-24.
McGill, T. J., & Klobas, J. E. (2009). A task–technology fit view of learning management system impact. Computers & Education, 52(2), 496-508.
Mayadas AF, Bourne J and Bacsich P. (2009). Online education today. Journal of Asynchronous Learning Networks, 13(2), 49–56.
Nakayama, M., Yamamoto, H., & Santiago, R. (2007). The Impact of Learner Characteristics on Learning Performance in Hybrid Courses among Japanese Students. Electronic Journal of E-Learning, 5(3), 195-206.
Ngai, E. W., Poon, J. K. L., & Chan, Y. H. (2007). Empirical examination of the adoption of WebCT using TAM. Computers & education, 48(2), 250-267.
Okoro, C. A. (2020). Academic engagement among Nigerian undergraduate students: Roles of academic resilience, achievement motivation and self-efficacy. Nigerian Journal of Psychological Research, 16(2).
Permatasari, N., Ashari, F. R., & Ismail, N. (2021). Contribution of Perceived Social Support (Peer, Family, and Teacher) to Academic Resilience during COVID-19. Golden Ratio of Social Science and Education, 1(1), 01-12.
Pintrich, P.R. (2000). Multiple goals, multiple pathways: The role of goal orientation in learning and achievement. J Educ Psychol, 92(3), 544.
Popovici, A., & Mironov, C. (2015). Students’ perception on using eLearning technologies. Procedia-Social and Behavioral Sciences, 180, 1514-1519.
Puswiartika, D., & Gatot, I. (2020). The Effect of Resilience on E-Learning Psychological Readiness of College Students of Guidance and Counselling Program. In 2020 6th International Conference on Education and Technology (ICET) (pp. 214-217). IEEE.
Shah, S. A., Marwat, I. U. K., Din, A. U., & Khan, A. (2017). Impact of various factors on student’s attitude towards adoption of Learning Management System (LMS) in Pakistan.
Sharma, S., Dick, G., Chin, W., & Land, L. (2007). Self-regulation and e-learning.Proceedings of the Fifteenth European Conference on Information System, University of St. Gallen, St. Gallen (2007), pp. 383-394
Spiteri, M., & Rundgren, S. N. C. (2020). Literature review on the factors affecting primary teachers’ use of digital technology. Technology, Knowledge and Learning, 25(1), 115-128.
Theobald, M., Bellhäuser, H., & Imhof, M. (2018). Identifying individual differences using log-file analysis: Distributed learning as mediator between conscientiousness and exam grades. Learning and Individual Differences, 65, 112-122.
Ting, L. P. Y., Teng, S. Y., Chuang, K. T., & Lim, E. P. (2020, November). Learning Personal Conscientiousness from Footprints in E-Learning Systems. In 2020 IEEE International Conference on Data Mining (ICDM) (pp. 1292-1297). IEEE.
Vitoria, L., Mislinawati, M., & Nurmasyitah, N. (2018). Students’ perceptions on the implementation of e-learning: Helpful or unhelpful? In Journal of Physics: Conference Series (Vol. 1088, No. 1, p. 012058). IOP Publishing.
Walsh, M. J. (2020). Online Doctoral Student Grade Point Average, Conscientiousness, and Grit: A Moderation Analysis. Journal of Educators Online, 17(1), n1.
Wang, M. C., Haertel, G. D., & Walberg, H. J. (1997). Fostering Educational Resilience in Inner-City Schools. Publication Series No. 4.
Winne, P.H., & Hadwin, A.F. (1998). Studying as self-regulated learning. Metacognition Educational Theory Pract, 93, 27–30.
Wold, H. O. (1989). Introduction to the second generation of multivariate analysis. In: H. O. Wold (Ed.), Theoretical empiricism: A general rationale for scientific model-building (pp. VIII–XL). New York, NY: Paragon House.
Wong, T. L., Xie, H., Zou, D., Wang, F. L., Tang, J. K. T., Kong, A., & Kwan, R. (2020). How to facilitate self-regulated learning? A case study on open educational resources. Journal of Computers in Education, 7(1), 51-77.
Yavuzalp, N., & Bahcivan, E. (2021). A structural equation modeling analysis of relationships among university students’ readiness for e-learning, self-regulation skills, satisfaction, and academic achievement. Research and Practice in Technology Enhanced Learning, 16(1), 1-17.
Zimmerman, B. J. (1990). Self-regulated learning and academic achievement: An overview. Educational Psychologist, 25(1), 3–17. https://doi.org/10.1207/s15326985ep2501_2.