Document Type : Research Paper

Authors

1 professor Department of Psychology Faculty of Literature and Humanities Lorestan University, Khorramabad, Iran.

2 PHD student in Educational Psychology/ Shahid chamran University

Abstract

The present study aimed to compare the religious attitudes, self-efficacy and academic adjustment among undergraduated students based on sex, as well as the power of each variable in predicting academic achievement. The study population included all students of faculty of literature and humanity in Islamic Azad university, Izeh branch; during the academic year of 2015-16. This was correlational and comparative study. The research sample consisted of 274 students (130 male and 144 female), who were selected by stratified random sampling method. Religious Attitude Questionnaire (Golriz & Braheni, 1975), Self-efficacy Scale (Sherer & etal, 1982), Academic adjustment Questionnaire (baker & siryk, 1986) have been used for data collection. also student's average scores were used to measure academic achievement. The data was analyzed by ANOVA, Pearson correlation coefficient and stepwise multiple regression analysis. The result showed that there was significant difference between two groups of students in terms of academic self-efficacy and academic adjustment but there was no significant difference in their religious attitudes. The result of pearson correlation analysis indicated that there was no significant relationship between religious attitudes and academic achievement but there was significant relationship between self-efficacy, academic adjustment and academic achievement. stepwise regression analysis results also suggested that self efficacy and academic adjustment in female students and academic adjustment in male students are the most powerful predictors of academic achievement.

Keywords

پیک سنجش (1393 الف). راهنمای داوطلبان برای انتخاب رشته و ضوابط پذیرش دانشجو در آزمون سراسری 93، سال نوزدهم، شماره 14.
پیک سنجش (1393 ب). نمره کل آزمون چگونه ساخته می‌شود؟ سال نوزدهم، شماره 16.
تیلور، کاترین، اس. (2013). روایی و رواسازی. ترجمه یونسی (1398). انتشارات دانشگاه علامه طباطبائی.
خدایی، ابراهیم (1393). توضیحات رئیس سازمان سنجش درباره سهمیه‌ها. https://www.tabnak.ir/fa/news/
شارع­پور، محمود (1386). جامعه­شناسی آموزش‌وپرورش. تهران: انتشارات سمت.
فاطمه اسلامی هرندی، فریبا کریمی، محمدعلی نادی (1398). شناسایی مؤلفه‌های عدالت آموزشی در آموزش‌وپرورش ایران، فصلنامه پژوهش در نظام‌های آموزشی، 13(47)، ۵۵-۷۵.
لرد، فردریک، ام. (1980). کاربردهای نظریه سؤال- پاسخ. ترجمه دلاور و یونسی (1391). انتشارات رشد.
مگنوسون، داوید. (1966). مبانی نظری آزمون‌های روانی. ترجمۀ محمد نقی براهنی (1370)، انتشارات دانشگاه تهران.
یونسی، جلیل اسکندری، فرزاد، دلاور، علی، فلسفی‌نژاد، محمدرضا، فرخی، نورعلی (1393). مقایسه توانمندی رویکرد بیزی مدل IRT چندسطحی و مدل کلاسیک چندسطحی: تحلیل داده‌های آزمون فیزیک تیمز پیشرفته (2008)، فصلنامه اندازه‌گیری تربیتی، 5 (15)، ۱۶۶-۱۸۶.
یونسی، جلیل، دلاور، علی، اسکندری، فرزاد، فلسفی‌نژاد، محمدرضا، فرخی، نورعلی (1393). توانمندی رویکرد بیزی مدل چندسطحی: تحلیل داده‌های آزمون ریاضیات تیمز پیشرفته (2008)، فصلنامه پژوهش در نظام‌های آموزشی، 8 (24)، ۲۹۵.
Bennett, C. Both, C. & Yeadle, S. (2001). Mainstreaming equality in the committees of the Scottish parliament. University of strathclyde.
Beretvas, S. N. & Kamata, A. (2005). The multilevel measurement models: Introduction to the special issue. Journal of Applied Measurement, 6, 247-254.
Bloom, H. S. (2005). Learning more from social experiments: Evolving analytic approaches.
Brennan, R. L (2006). (Ed.). Educational measurement (4th ed.). Westport, CT: Praeger.
Embereston, Susan E. Reise, Steven P. (2000). Item Response Theory for psychologists. Lawrence Erlbaum Associates, Publishers, Mahwah, New Jersey. London.
Feinberg, R. A. & Rubright, J. D. (2016). Conducting Simulation Studies in Psychometrics. Educational Measurement: Issues and Practice, 35(2), 36-49.
Feldman, S. (2001). Closing the Achievement Gap. American Educator25(3), 7-9.
Fox, J. P. (2010). Bayesian Item Response Modeling: Theory and Applications. New York: Springer.
Fox, J.P. (2001). Multilevel IRT: A Bayesian Perspective on Estimating Parameters and Testing Statistical Hypotheses. PhD dissertation, University of Twente, Faculty of Behavioural Sciences.
Ganzeboom, H.B.G. Treiman, D.J. and Ultee, W. (1991). Comparative intergenerational stratification research: Three generations and beyond, Annual Review of Sociology, 17: 277-302.
Gee, J. P. (2008). A sociocultural perspective on opportunity to learn. Assessment, equity, and opportunity to learn, 76-108.
Goldstein, H. (2003). Multilevel Statistical Models, 3rd ed. London: Hodder Arnold.
Golstein, H. (1999). Multilevel Statistical Models. London: Institute of Education, Multilevel Models Project.
Herman, J. L. Klein, D. C. & Abedi, J. (2000). Assessing students' opportunity to learn: Teacher and student perspectives. Educational Measurement: Issues and Practice19(4), 16-24.
 Kamata, A. Bauer, D.J. & Miyazaki, Y. (2008). Multilevel measurement modeling. In A.A. O'Connell & D.B. McCoach (Eds.) Multilevel Modeling of Educational Data (pp. 345-388). Charlotte, NC: Information Age Publishing.
Kane, M. T. (2006). Validation. In R. L. Brennan (ed.), Educational measurement (4th Ed.) (pp. 17-64). Westport, CT: Praeger.
Kerckhoff, A.C. (1995). Institutional arrangements and stratification processes in industrial societies, Annual Review of Sociology, 15: 323-347.
Kline, R. B. (1998). Principles and practice of structural equation modeling. New York: Guilford.
Messick, S. (1989). Validity. In R. L. Linn (Ed.), Educational measurement (3rd Ed.) (pp. 13-103). New York: Macmillan.
Mousavi, A. (2013, April). Analyzing data from educational surveys: a comparison of HLM and Multilevel IRT, Paper presented at the annual conference of National council on Measurement in Education. San Francisco. USA.
Muthén, L. K. & Muthén, B. O. (2012). Mplus 7.1 for Windows. Los Angeles, CA: Muthén & Muthén.
New York, NY: Russell Sage Foundation.
Nunnally. J. C. & Burnstein (1994). Psychometric Theory. Mc Graw- Hill book Co.
Raudenbush, S. W. and Bryk, A. S. (2002). Hierarchical Linear Models: Applications and Data Analysis Methods, 2nd ed. Thousand Oaks, CA: Sage.
Rutkowski, L. Gonzalez, E. Joncas, M. & von Davier, M. (2010). International large-scale assessment data issues in secondary analysis and reporting. Educational Researcher, 39(2), 142-151.
Schmidt, W.H. & Maier, A. (2009). Opportunity to Learn. In Sykes, G. Schneider, B. & Plank, D.N (Eds.), Handbook of Educational Policy (p. 541-559). New York, NY: Routledge.
Snijders T. A. B. & Bosker R. J. (2000). Multilevel analysis. An introduction to Basic and Advanced Multilevel Modeling. Thousand Oaks, CA: Sage.
van der Linden, W. J. and Hambleton, R. K. (1997). Handbook of Modern Item Response Theory. New York: Springer.
Vartanian, T. P. (2010). Secondary data analysis. Oxford University Press.
Zimowski, M. F. Muraki, E. Mislevy, R. J. and Bock, R. D. (1996). BILOG MG: Multiple-Group IRT Analysis and Test Maintenance for Binary Items [computer software]. Chicago, IL: Scientific Software International.